
La nature agit toujours par les moyens les plus aisés, c’est-à-dire ou par les lignes les plus
courtes, lorsqu’elles n’emportent pas plus de temps, ou en tout cas par le temps le plus court,

afin d’acourcir son travail et de venir plus tôt à bout de son opération
– Pierre de Fermat, 1662

1 Introduction

La lumière intrigue l’humanité depuis des temps immémoriaux : des traces de son étude
remontent jusqu’au 1er siècle chez les Grecs de l’école d’Alexandrie. L’optique géométrique,
souvent basée sur des observations empiriques et développée entre le XIe et le XVIIIe siècles,
vient proposer une explication pour la propagation de la lumière et la formation des images.
Supplantée par la suite sous plusieurs aspects par le développement de l’optique ondulatoire
au XIXe siècle, elle n’en reste pas moins très pertinente pour l’étude de nombreux systèmes
physiques : lunettes (astronomiques ou de vue), télescopes, microscopes, fibres optiques..., et
possède ainsi de nombreuses applications.

Au programme de ce chapitre, nous commencerons par rappeler plusieurs concepts
d’optique géométrique tels que le concept de rayon lumineux, en faisant le lien avec l’approche
ondulatoire de la lumière pour montrer les limites de l’optique géométrique. Suite à cela, nous
nous pencherons sur les changements de milieux des rayons lumineux, en présentant la loi
de Snell-Descartes. Dans un second temps, nous présenterons le concept de lentille mince
idéale, ainsi que les techniques de construction d’images formées par celle-ci. Nous sortirons
en particulier des programmes de lycée en introduisant le cas de la lentille divergente. Nous
aborderons ensuite la relation de conjugaison des lentilles minces. Enfin, nous présenterons
une grande variété d’illustrations d’appareils optiques du quotidien (ou pas !) en détaillant leur
fonctionnement.

2 Concepts d’optique géométrique

2.1 Modèle du rayon lumineux

Le modèle du rayon lumineux est à la base de l’optique géométrique. Le rayon lumineux est
la ligne suivant laquelle l’énergie lumineuse se propage. Les faisceaux lumineux issus d’une
source lumineuse sont formés de rayons lumineux. Il n’est toutefois pas possible d’isoler un
rayon lumineux, car cela nécessiterait d’utiliser un diaphragme 1 avec une ouverture infiniment
fine, ce qui est une situation dans laquelle l’optique géométrique n’est plus valable, comme
on le verra dans la partie 2.2.

Dans toute cette partie, on s’intéresse au comportement des rayons lumineux se propageant
dans des milieux variés.

1. Diaphragme : trou de diamètre ajustable, permettant de régler la taille du faisceau en sortie
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Physicité Optique géométrique

Définition 1 : Milieu homogène

On dit qu’un milieu est homogène s’il a les mêmes propriétés physiques (température,
masse volumique, pression, etc.) en tout point.

Les rayons lumineux ont une propriété intéressante lorsqu’ils se propagent dans un milieu
homogène, que l’on va énoncer :

Propriété 1 : Propagation rectiligne

Un rayon lumineux se propage en ligne droite dans un milieu homogène, de la source
jusqu’au récepteur.

On peut vérifier grossièrement cette propriété en envoyant des particules diffusantes
(poussière, fumée, gouttelettes d’eau etc.) sur le trajet d’un faisceau laser. Une vérification
plus poussée nécessite de pouvoir définir la notion de "ligne droite" par un autre moyen que
l’optique 2, par exemple en tendant horizontalement un fil fin lesté à ses deux extrémités.

Définition 2 : Indice de réfraction

L’indice de réfraction, ou indice optique, est un nombre adimensionné a propre à un
milieu de propagation. Il traduit à quel point la vitesse de la lumière est modifiée au sein
de ce milieu, et est défini comme n = c

v avec c la vitesse de la lumière dans le vide, v la
vitesse de la lumière dans le milieu et n l’indice de réfraction.

a. C’est-à-dire sans unité au sens physique du terme. Autrement dit, il ne s’agit pas d’une longueur,
d’une vitesse, d’un temps, d’une énergie etc., mais d’un nombre, sans unité associée.

On remarque qu’avec cette définition, l’indice optique du vide vaut 1, et comme la vitesse
de la lumière dans un milieu ne peut dépasser la vitesse de la lumière dans le vide, l’indice de
réfraction d’un matériau est toujours supérieur ou égal à 1. On donne à titre d’illustration la
valeur des indices de réfraction de quelques matériaux dans le tableau 1 :

Matériau Vide Air Vapeur d’eau Eau liquide Glace Verre ordinaire Diamant
Indice 1 1,000 29 1,000 25 1,333 1,31 1,51 2,417

Tableau 1 – Quelques indices de réfraction de milieux matériels, estimés pour la longueur
d’onde λ = 589 nm. À noter que ces valeurs peuvent varier légèrement selon les conditions de
pression (pour les fluides) et température considérées. Données issues de [1].

À l’ordre 1, on néglige généralement les variations d’indice optique avec la longueur d’onde,
qui conduiraient, si on les prenait en compte, au phénomène de dispersion. La dispersion
se produit lorsque les différentes longueurs d’onde ne se propagent pas à la même vitesse
dans le milieu. On verra plus loin avec l’exemple du prisme qu’on a une déviation des rayons
réfractés qui dépend de la longueur d’onde. On peut, si l’on souhaite davantage de précision,
utiliser la loi de Cauchy : n(λ) = n0 +

α
λ2 , avec n0 et α caractéristiques du matériau considéré.

On conclut cette section en énonçant un principe fondamental de l’optique géométrique :

2. Plus qu’une ligne droite, il s’agit d’une géodésique, i.e. la ligne la plus courte entre deux points, ici la source
et le récepteur. La ligne droite coïncide avec la géodésique en espace euclidien. Toutefois, lorsqu’on considère la
théorie de la relativité générale, développée par Einstein en 1915, l’espace est courbé par la présence de matière.
Dans ce cas, les rayons lumineux sont déviés, comme l’a montré expérimentalement Eddington lors d’une éclipse
de Soleil en 1919.
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Propriété 2 : Retour inverse de la lumière

Le trajet parcouru par la lumière est indépendant du sens de parcours. Autrement dit,
un rayon lumineux passera par les mêmes endroits en effectuant le trajet du point A au
point B qu’en effectuant le trajet du point B au point A.

2.2 Limites de l’optique géométrique

Comme mentionné précédemment, il n’est pas possible d’isoler un rayon lumineux. Essayons
de réduire la taille d’un faisceau lumineux à l’aide d’un diaphragme pour isoler un rayon, et en
observant le faisceau transmis à travers le diaphragme sur un écran. Quand on commence
à réduire la taille du diaphragme, on a d’abord un disque lumineux, puis un disque lumineux
plus petit, puis un disque lumineux encore plus petit puis... une figure avec des anneaux ? ? !

Figure 1 – Exemple de figure de diffraction lors du passage d’un rayon lumineux à travers un
trou de faible diamètre : on appelle cette figure la tache d’Airy. Image issue de Wikimedia
Commons.

En effet, des effets ondulatoires, non décrits par la théorie de l’optique géométrique, se
manifestent dès que les dimensions des ouvertures et des obstacles deviennent de l’ordre de
la longueur d’onde λ du rayonnement utilisé. Sur la figure 1, on voit ainsi un pattern d’anneaux
circulaires autour d’une tache centrale, révélant la diffraction de la lumière par un trou de
faible ouverture. L’optique géométrique correspond donc à la limite λ << d avec d la taille
typique des obstacles et ouvertures.

Une autre limite de l’optique géométrique est qu’elle suppose que les rayons lumineux sont
indépendants entre eux ; lorsque que cela n’est plus le cas, des phénomènes d’interférences 3

se produisent alors.

2.3 Changement de milieu, loi de Snell-Descartes

On va commencer par donner quelques définitions des concepts avec lesquels on travaillera
par la suite.

3. Allez (re)voir le super cours de Physicité à ce sujet si vous voulez en savoir plus sur la diffraction et les
interférences !
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Définition 3 : Dioptre

Un dioptre est une interface parfaitement polie a entre deux milieux transparents
d’indices optiques différents.

a. On entend par là que les irrégularités de surface sont très inférieures à la longueur d’onde λ
considérée [2]

Définition 4 : Miroir

Un miroir est une surface parfaitement polie recouverte d’un fin dépôt métallique
réfléchissant.

Soit un dioptre (ou un miroir) entre deux milieux 1 et 2. On dit que le rayon lumineux est
incident avant d’avoir rencontré le dioptre (ou le miroir), réfléchi lorsqu’il reste dans le milieu
initial après avoir rencontré le dioptre (ou le miroir), et réfracté lorsqu’il change de milieu suite
à sa rencontre avec le dioptre (pas possible avec un miroir). Ce dernier cas correspond au cas
d’une paille trempant partiellement dans un verre d’eau que l’on observe de l’extérieur ; la
paille semble discontinue à l’interface eau-air car les rayons lumineux sont déviés à l’interface.
Cette déviation suit la loi de Snell-Descartes, que nous allons aborder dans peu de temps.

À noter que les deux phénomènes, réflexion et réfraction, sont fréquemment présents
ensemble ; par exemple, à la mer, on peut à la fois voir les rayons du Soleil réfléchis à la
surface, et les rayons réfractés provenant d’objets sous l’eau.

Figure 2 – Schéma des phénomènes de réflexion et réfraction d’un rayon lumineux partant
d’une source A. Le rayon se propage en ligne droite dans les milieux 1 et 2 d’indices respectifs
n1 et n2, car ce sont des milieux supposés homogènes, mais est dévié au niveau du dioptre, au
point M , donnant ainsi naissance au rayon réfracté dans le milieu 2, et au rayon réfléchi dans
le milieu 1.

On va à présent se pencher sur le point de rencontre entre les rayons lumineux et un
dioptre / miroir.

Définition 5 : Plan d’incidence

Le plan d’incidence est le plan contenant la normale au dioptre / miroir au point
d’intersection entre le rayon lumineux incident et celui-ci, ainsi que le rayon lumineux
incident. Une illustration est donnée en figure 3.

Tous les schémas par la suite sont placés dans le plan d’incidence.
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Figure 3 – Représentation du plan d’incidence : il s’agit du plan contenant à la fois le rayon
lumineux incident et le vecteur n⃗ normal à la surface du dioptre au point d’intersection entre
celui-ci et le rayon incident.

On mesure toujours l’angle d’un rayon incident, réfléchi ou réfracté à partir de la normale n⃗
au dioptre, dans le plan d’incidence.

La loi de Snell-Descartes permet de déterminer l’angle de réfraction d’un rayon lumineux
changeant de milieu, ainsi que l’angle de réflexion d’un rayon lumineux réfléchi à l’interface.

On considère un rayon lumineux passant d’un milieu 1 d’indice de réfraction n1 à un milieu
2 d’indice de réfraction n2. On note i1 et i2 respectivement les angles des rayons incident et
réfracté, et i′1 l’angle du rayon réfléchi, toujours mesurés à partir de la normale à l’interface
entre les milieux 4, comme présenté figure 2.

La loi de Snell-Descartes s’énonce alors :

Propriété 3 : Loi de Snell-Descartes

Pour le rayon réfracté :

— Le rayon réfracté se trouve dans le plan d’incidence ;

— Les angles des rayons incident et réfracté vérifient la relation :

n1 sin(i1) = n2 sin(i2) (1)

Pour le rayon réfléchi :

— Le rayon réfléchi se trouve dans le plan d’incidence ;

— Les angles des rayons incident et réfléchi vérifient la relation a :

i1 = i′1 (2)

a. Parfois, on oriente les angles, en comptant un angle comme positif s’il est orienté dans le sens
trigonométrique, et négatif s’il est orienté dans le sens horaire, ce qui conduit dans ce cas à un signe - pour
l’angle du rayon réfléchi. Dans ce cours, on a fait le choix de ne pas orienter les angles afin de faciliter les
notations.

Si le milieu 2 considéré a un indice plus élevé que le milieu 1, on dit qu’il est plus

4. Je me répète, mais se tromper dans la mesure de l’angle en prenant l’angle complémentaire est souvent une
erreur fatale, et la pédagogie, c’est l’art de la répétition !
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réfringent que le milieu 1. La loi de Snell-Descartes indique alors que, pour le passage d’un
milieu moins réfringent à un milieu plus réfringent, le rayon réfracté va se rapprocher de la
normale au dioptre ; en effet, pour conserver l’égalité n1 sin(i1) = n2 sin(i2) avec n1 < n2, il faut
nécessairement avoir sin(i1) > sin(i2) et donc i1 > i2.

On va à présent mentionner une conséquence de la loi de Snell-Descartes pour la réfraction ;
l’existence, à partir d’un certain angle d’incidence, et pour le passage d’un milieu plus réfringent
à un milieu moins réfringent, du phénomène de réflexion totale.

Propriété 4 : Réflexion totale

Que se passe-t-il lorsqu’on passe d’un milieu plus réfringent à un milieu moins réfringent,
et qu’on augmente progressivement l’angle d’incidence ? Dans ce cas, contrairement à
l’exemple mentionné juste au-dessus, on a n1 > n2 donc i1 < i2, et le rayon réfracté sera
plus éloigné de la normale au dioptre que le rayon incident. À partir d’un certain angle
irt1 < π

2 , on aura donc i2 = π
2 , et le rayon réfracté disparaît. La loi de Snell-Descartes

donne alors n1 sin
(
irt1

)
= n2 d’où irt1 = arcsin

(
n2

n1

)
. Ce phénomène s’appelle la réflexion

totale, car au-delà de l’angle limite irt1 , il ne reste plus que le rayon réfléchi.

Ce phénomène est notamment exploité dans les fibres optiques à gradient d’indice, où il
permet de confiner les rayons lumineux sur de grandes distances, ce en diminuant progressi-
vement l’indice optique du matériau constituant la fibre lorsqu’on s’éloigne de l’axe du cœur
de la fibre.

On va également donner deux illustrations des phénomènes de réflexion et réfraction dans
la vie courante : les mirages et les arc-en-ciels.

Figure 4 – Exemple de réfraction et réflexion totale d’un rayon lumineux se propageant dans
l’atmosphère.
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Exemple 1 : Digressions atmosphériques 1/3 : Propagation en milieu inhomogène

On a dit plus haut que la lumière se propage toujours en ligne droite dans un milieu
homogène. On va voir que ce n’est plus le cas lorsque l’indice de réfraction varie, et
donc lorsque le milieu devient inhomogène.
Considérons la figure 4. Elle représente typiquement le trajet d’un rayon lumineux dans
un milieu où l’indice optique augmente avec z, indiqué sur le schéma par le fait que
i1 < i2, traduisant le fait qu’à cet endroit, le rayon passe d’un milieu plus réfringent à
un milieu moins réfringent. Ce type de propagation est courant dans la couche la plus
basse de l’atmosphère, la troposphère, qui part de la surface terrestre et fait environ
10 km de haut. Dans cette couche, en effet, l’air est chauffé par le sol, qui absorbe le
rayonnement solaire incident et le réémet sous forme d’infrarouges. Le trajet du rayon
lumineux dans l’atmosphère peut alors être approché par une série de segments de
droites se propageant dans des couches de faible épaisseur dz ayant un indice optique
ni, i ∈ {1, 2, ...}. Plus petite sera cette épaisseur dz, meilleure sera l’approximation des
segments de droite.
Appliquant la loi de Snell-Descartes à toutes les interfaces entre les couches, on a à ce
moment-là :

n1 sin(i1) = n2 sin(i2) = n3 sin(i3) = . . .

Autrement dit, en prenant des couches infiniment fines dans la limite dz → 0, on a :

n(z) sin(i(z)) = constante = n1 sin(i1) (3)

Avec n(z) la valeur de l’indice optique à l’altitude z et i(z) l’angle formé entre le rayon
lumineux et la verticale (en supposant que le milieu est homogène horizontalement).
On voit sur la figure 5 qu’on peut exprimer i(z) en fonction des déplacements infinitési-
maux dz et dx, plus exactement, on a :

tan(i(z)) =
sin(i(z))

cos(i(z))
=

dx

dz

Or, par équation (3), on a également que sin(i(z)) =
n1

n(z)
sin(i1)

Donc tan(i(z)) =
dx

dz
=⇒ tan(i(z))dz = dx et on peut alors remplacer la tangente par son

expression en fonction de sin(i(z)). On a alors, en utilisant la relation trigonométrique
cos2 θ + sin2 θ = 1 :

tan(i(z)) =
sin(i(z))

cos(i(z))
=

n1

n(z)
sin(i1)√

1− sin2(i(z))
=

n1

n(z)
sin(i1)

1− n2
1

n2(z)
sin2(i1)

=
n1 sin(i1)√

n2(z)− n2
1 sin

2(i1)

On peut finalement remplacer la tangente par cette expression, et intégrer l’équation :

dx = tan(i(z))dz =⇒

xfˆ

x=x0

dx = xf − x0 =

zfˆ

z=0

tan(i(z))dz =

zfˆ

z=0

n1 sin(i1)√
n2(z)− n2

1 sin
2(i1)

dz

Si on a un modèle pour la fonction z 7→ n(z) (on ne le fera pas ici, mais si on connaît
l’évolution de la température avec z dans l’atmosphère, on peut estimer la variation
associée de l’indice optique), on peut alors calculer l’intégrale, et en déduire l’équation
de la trajectoire du rayon lumineux.
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Exemple 2 : Digressions atmosphériques 2/3 : Mirages

Les calculs précédents sont bien jolis, mais on n’a toujours pas expliqué ce qu’était un
mirage a ! Dans ce cas, comme illustré sur la figure 4, de fortes variations de température
au niveau du sol, par exemple sur du sable ou bien sur une route goudronnée, sont à
l’origine d’une variation importante de l’indice de réfraction de l’air. Les rayons lumineux
sont ainsi réfractés, et donc déviés d’une trajectoire rectiligne, jusqu’au point où les
rayons sont suffisamment proches de l’horizontale pour qu’un phénomène de réflexion
totale apparaisse, au niveau de i3 sur la figure 4. Lorsque ces rayons réfléchis atteignent
par la suite un œil humain, ils semblent alors provenir de leur prolongement rectiligne,
c’est-à-dire du sol. Pour peu que ce soient des rayons lumineux issus d’un palmier qui
soient déviés de cette façon, l’image résultante pour l’observateur·ice est un palmier à
l’envers, interprété comme un palmier se reflétant dans de l’eau, image classique de
mirage au milieu du désert...

a. Ici, on ne parlera que du cas des mirages dits inférieurs. Si la température est plus froide au niveau
du sol qu’au-dessus, le principe physique est le même et on parle de mirages supérieurs. Une dernière
catégorie de mirage sont les Fata Morgana, combinaison complexe de plusieurs images.

Figure 5 – Estimation de l’angle i(z) en fonction des déplacements infinitésimaux selon z et x.
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Exemple 3 : Digressions atmosphériques 3/3 : Arc-en-ciels

Penchons-nous à présent sur le cas des arc-en-ciels. Un arc-en-ciel est un phénomène
optique causé par la déviation de la lumière du Soleil par des gouttelettes d’eau en
suspension dans l’atmosphère. Les rayons du Soleil vont traverser une goutte comme
représenté sur la figure 6, en étant réfractées à l’interface goutte-air, puis en subissant
un nombre varié de réflexions. Si l’on note DN la déviation, i.e. l’écart entre le rayon
initial et le rayon final, d’un rayon subissant N réflexions à l’intérieur de la goutte, on
peut montrer a que DN = 2(i− r) +N(π − r). En effet, on a deux réfractions ayant une
déviation d’angle i − r, comme illustré sur la droite de la figure 4, et N réflexions de
déviation π − r.
À terminer ! !

a. Attention, il est ici nécessaire d’orienter les angles, de la normale vers le rayon, comme indiqué par
les flèches des angles sur la figure 6 ; un angle est compté comme positif s’il est orienté dans le sens
trigonométrique, et négatif dans le cas contraire.

Figure 6 – Figure de gauche : schéma d’une goutte traversée par un rayon lumineux subissant
deux réflexions. Figure de droite : définition de la déviation d’un rayon lumineux à une interface,
ici représentée en bleu. La déviation représente l’angle (orienté) entre le prolongement du
rayon incident, et le rayon sortant du système optique.

Pour le lecteur ou la lectrice intéressé·e, on conclut cette partie par une démonstration de
la loi de Snell-Descartes pour la réfraction 5, à l’aide du principe de Fermat, cité en ouverture
de ce chapitre ; la nature agit toujours par les moyens les plus aisés, c’est-à-dire ou par les
lignes les plus courtes, lorsqu’elles n’emportent pas plus de temps, ou en tout cas par le temps
le plus court, afin d’acourcir son travail et de venir plus tôt à bout de son opération.

5. La loi en réflexion est d’un certain point de vue un corollaire de la loi en réfraction, puisqu’elle correspond
au cas n1 = −n2, ce qui conduit à i1 = −i2, qui est la loi de Snell-Descartes pour la réflexion avec des angles
orientés [2].
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Démonstration 1 : Loi de Snell-Descartes

Pour démontrer la loi de Snell-Descartes, on exploite le principe de Fermat en minimisant
le temps de parcours de la lumière entre les deux points A et B représentés en figure 7.
Le point A est placé dans le milieu 1 d’indice optique n1 tandis que le point B est placé
dans le milieu 2 d’indice optique n2. Les vitesses de propagation de la lumière dans les
milieux 1 et 2 sont respectivement v1 =

c
n1

et v2 =
c
n2
. On note M le point de l’interface

entre les milieux 1 et 2 par lequel passe le rayon lumineux allant de A à B, et L = L1 +L2

la projection sur l’axe x de la distance AB (voir figure 7), avec L1 la partie correspondant
à la traversée du milieu 1 et L2 celle correspondant au milieu 2. De même, on note
H = H1 + H2 la projection selon l’axe y de la distance AB. On peut alors exprimer le
temps de parcours ∆t du rayon lumineux entre A et B :

∆t =∆t1 +∆t2 avec ∆ti le temps de propagation dans le milieu i ∈ {1, 2}

=
||
−−→
AM ||
v1

+
||
−−→
MB||
v2

=
n1||

−−→
AM ||
c

+
n2||

−−→
MB||
c

=
n1

c

√
H2

1 + L2
1 +

n2

c

√
H2

2 + L2
2

=
n1

c

√
H2

1 + L2
1 +

n2

c

√
H2

2 + (L− L1)2 en remplaçant L2 = L− L1

On remarque que, pour deux milieux 1, 2 et deux points A,B donnés, le seul paramètre
variable de ∆t est la distance L1. Autrement dit, pour un problème donné, ∆t est une
fonction de L1 uniquement. Comme la lumière va, par principe de Fermat, adopter le
chemin le plus rapide entre A et B, la position du point M lors du trajet de la lumière est
telle que ∆t soit un minimum. En particulier, le minimum de n’importe quelle fonction
est un extremum, donc la dérivée première prise en ce point est nulle. On va donc
étudier la dérivée de ∆t :

d ∆t

d L1
=
n1

c

L1√
H2

1 + L2
1

− n2

c

L− L1√
H2

2 + (L− L1)2

=
n1

c
sin(i1)−

n2

c
sin(i2) en reconnaissant les sinus des angles i1 et i2

Le trajet de la lumière doit vérifier, par principe de Fermat :

d ∆t

d L1
= 0

=⇒ n1

c
sin(i1)−

n2

c
sin(i2) = 0

=⇒ n1 sin(i1) = n2 sin(i2) en passant le second terme à droite et en multipliant par c

On obtient donc bien la loi de la réfraction de Snell-Descartes.
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Figure 7 – Schéma utilisé pour la démonstration de la loi de Snell-Descartes.

2.4 Sources non-ponctuelles : cône d’ombre, cône de pénombre

Jusqu’à maintenant, on a étudié de quelle façon les rayons se propageaient. Il arrive
toutefois qu’ils soient bloqués par un obstacle, générant une absence de lumière sur une
certaine zone. Pour les sources étendues (i.e. non ponctuelles), il arrive également que certains
rayons puissent passer et que d’autres soient bloqués par l’obstacle, par exemple dans le cas
d’une éclipse partielle de Soleil.

Figure 8 – Zones d’ombre (A) et de pénombre (B), générées par un obstacle vertical bloquant
partiellement la lumière issue des sources L1 et L2. Image issue de Wikimedia Commons.

Un schéma est fourni en figure 8. On parle de zone d’ombre lorsqu’aucun rayon de la source
lumineuse ne parvient à éclairer cette zone, et de zone de pénombre lorsque seule une partie
des rayons lumineux est bloquée par l’obstacle.

2.5 Prismes

Hors-programme a priori ? Peut-être mieux à traiter en exercice ? Donner/démontrer la
formule donnant l’indice du prisme en fonction de la déviation et de l’angle du prisme?
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2.6 [Hors-programme IPhO] Principe de Fermat, principe de moindre action

Cette section est hors-programme dans le cadre du cours d’optique géométrique (le dernier
paragraphe peut toutefois servir dans le cadre de celui d’ondes) (l’autrice concède que le début
est une pure digression probablement assez peu utile).

On a dit précédemment que la loi de Snell-Descartes permet à la lumière d’emprunter
le chemin le plus rapide dans son trajet, lorsqu’elle fait face à un changement de milieu. Il
est donc question ici d’un problème de minimisation de temps de parcours. Ces problèmes
de minimisation sont étudiés depuis assez longtemps avec un succès variable ; ainsi, Galilée
s’était demandé au XVIIe quelle était la forme de la courbe permettant la descente la plus
rapide entre deux points donnés A et B. D’autres savants comme Pierre de Fermat ont ensuite
pris sa suite dans l’étude des problèmes de minimisation, conduisant à des avancées notables
en optique géométrique.

Les problèmes de minimisation, dans des domaines variés allant de l’optique à la mécanique,
ont conduit à des principes variationnels comme le principe de moindre action.

Ces méthodes variationnelles servent encore aujourd’hui dans des branches très variées
de la mécanique. On peut notamment démontrer la seconde loi de Newton, aussi appelée
principe fondamental de la dynamique, en admettant le principe de moindre action, et donc
redémontrer toute la mécanique en partant d’un postulat différent ! Elles sont également un
champ de recherche actif, en particulier en hydrodynamique.

Il est quelque peu troublant 6 de se dire que la lumière "sait" toujours à l’avance quel
chemin est le plus court, et l’emprunte directement. Heureusement, l’optique ondulatoire
vient ici à notre secours ; abandonnant le modèle du rayon lumineux, on peut considérer que
la lumière émet en chaque point des ondes sphériques, et que toutes les sources d’ondes
sphériques interagissent simultanément entre elles. La résultante des interférences est alors...
un rayon lumineux ! Ce modèle s’appelle le modèle de Huyghens.

3 Modèle de la lentille mince idéale

Dans cette partie, on va se pencher sur un composant central en optique : la lentille.
Formée par l’association de deux dioptres, comme visible sur la figure 11, elle est placée dans
un milieu environnant et va modifier la trajectoire des rayons lumineux.

On définit l’axe optique comme montré sur la figure 9. Il s’agit d’un axe orienté de la gauche
vers la droite, sur lequel nous allons centrer nos éléments optiques. Par convention, la lumière
se déplace toujours de la gauche vers la droite sur les schémas qui suivront.

On se place dans l’approximation de Gauss, qui consiste à ne considérer que des rayons
faiblement inclinés par rapport à l’axe optique, et arrivant proches du centre optique de la
lentille. Ces rayons sont appelés rayons paraxiaux. Dans le cas contraire, on peut se trouver
en présence d’aberrations géométriques, car les rayons éloignés de l’axe sont plus déviés par
la lentille que ceux paraxiaux. On peut également être en présence d’aberrations chromatiques
si les matériaux utilisés sont trop dispersifs, et donc avoir un trajet des rayons lumineux qui
va dépendre de la longueur d’onde. Mais dans cette section, on va supposer qu’il n’y a pas
d’aberrations et que le modèle de lentille mince est valide. On parle de lentille mince car
dans le cadre de ce modèle, on estime que l’épaisseur de la lentille est très faible devant
son diamètre, et qu’on peut donc négliger la déviation des rayons lumineux lors du passage à
l’intérieur de la lentille.

On admet dans la suite, dans le cadre de ce modèle, que les lentilles minces considérées
sont aplanétiques : l’image d’un objet perpendiculaire à l’axe optique est elle aussi perpendi-

6. En tout cas, ça m’a beaucoup perturbée à l’époque...
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culaire à l’axe optique. Plus généralement, l’image d’un plan perpendiculaire à l’axe optique est
également un plan perpendiculaire à l’axe optique. De même, on supposera que les lentilles
minces sont stigmatiques, autrement dit, que l’image d’un point par la lentille est un point.

On commence par (re)voir 7 le cas de la lentille convergente.

Définition 6 : Lentille convergente

Une lentille convergente est schématisée par une double flèche ↕. Comme on le voit sur
la figure 9, une lentille convergente est dotée d’un centre optique O, d’un foyer objet
F , placé à gauche de O, et d’un foyer image F ′, placé à droite de O. Ces deux foyers
sont symétriques l’un de l’autre par rapport à O. On définit enfin la distance focale
(parfois appelée distance focale image) OF ′ = f ′ > 0, toujours positive pour une lentille
convergente a.

a. On rappelle au passage la définition de la valeur algébrique pour une longueur sur l’axe optique Ox :
OF ′ = ||

−−→
OF ′|| si

−−→
OF ′ pointe vers les x croissants, et OF ′ = −||

−−→
OF ′|| sinon

Figure 9 – Schéma d’une lentille convergente.

Suite à cela, voilà la première grande nouveauté de ce cours par rapport aux programmes
de lycée : la lentille divergente.

Définition 7 : Lentille divergente

Une lentille divergente est schématisée par une double flèche dont les pointes sont
inversées. Comme on le voit sur la figure 10, une lentille divergente est dotée d’un centre
optique O, d’un foyer objet F , placé à droite de O, et d’un foyer image F ′, placé à gauche
de O. Ces deux foyers sont symétriques l’un de l’autre par rapport à O. On définit enfin
la distance focale OF ′ = f ′ < 0, toujours négative pour une lentille divergente.

Vous avez sans doute l’impression à ce stade que la définition de lentille divergente est un
mauvais copié-collé de celle de lentille convergente. C’est plutôt vrai pour le copié-collé, et
ces deux types de lentilles présentent de fait de nombreuses similitudes. Mais on va voir dans

7. Au programme de seconde générale (réforme 2019), revu dans les classes suivantes en spécialité physique-
chimie
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Figure 10 – Schéma d’une lentille divergente. Le foyer objet F est à droite du centre optique O
tandis que le foyer image F ′ est à sa gauche.

la partie qui suit à quel point les petites différences de définition vont avoir un grand impact
sur la propagation des rayons lumineux.

Juste avant d’aborder cela, on montre en figure 11 comment distinguer des lentilles
convergentes et divergentes : les lentilles convergentes sont plus épaisses au centre qu’aux
bords, et à l’inverse, les lentilles divergentes sont plus épaisses aux bords qu’au centre 8.

Figure 11 – Différentes formes de lentilles. On peut différencier les lentilles convergentes
et divergentes de façon relativement simple ; les lentilles convergentes sont plus épaisses
au centre qu’aux bords, et inversement pour les lentilles divergentes. Image issue de femto-
physique.

3.1 Construction d’images

Dans toute cette partie, on considère un objet A → B dont on fait l’image A′ → B′ par une
lentille. L’objet peut être placé à différents endroits sur l’axe optique. On appelle plan focal
objet (resp. plan focal image) le plan orthogonal à l’axe optique passant par F (resp. F ′). Cette
définition est valable à la fois pour les lentilles convergentes et les lentilles divergentes.

8. On peut retrouver les propriétés de convergence ou divergence de telles lentilles à l’aide de la courbure des
dioptres les formant, mais cela sort du modèle de la lentille mince idéale et du programme des IPhO, donc on ne
s’étendra pas sur ce sujet.

14/24

https://femto-physique.fr/optique/img/lentilles/lentilles_minces.svg
https://femto-physique.fr/optique/img/lentilles/lentilles_minces.svg


Physicité Optique géométrique

3.1.1 Cas d’une lentille convergente

Méthode 1 : Construire l’image d’un objet par une lentille convergente

Les rayons passant par une lentille convergente obéissent à cinq propriétés, qui per-
mettent de construire l’image d’un objet par la lentille :

1. Les rayons passant par le centre optique O ne sont pas déviés ;

2. Les rayons passant par le foyer objet F ressortent parallèles à l’axe optique ;

3. Les rayons arrivant parallèles à l’axe optique ressortent en passant par le foyer
image F ′ ;

4. Des rayons se coupant dans le plan focal objet ressortent parallèles ;

5. Des rayons arrivant parallèles sur la lentille ressortent en se coupant dans le plan
focal image.

Les propriétés 1, 2 et 3 sont utiles lorsqu’on veut déterminer l’image d’un objet par la
lentille, en traçant des rayons particuliers. Les propriétés 4 et 5, quant à elles, sont à
utiliser lorsqu’on souhaite déterminer la déviation par la lentille d’un rayon lumineux
quelconque donné.

La lentille convergente mérite bien son qualificatif de "convergente" ; en effet, considérons
une source de rayons parallèles à l’axe optique arrivant sur la lentille. Comme les rayons sont
parallèles à l’axe optique, selon la troisième propriété énoncée ci-dessus, ils vont ressortir par
le foyer image F ′. On aura ainsi une convergence des rayons lumineux au point F ′.

On va mettre de suite ces propriétés à profit pour construire l’image d’un objet par une
lentille convergente.

Exemple 4 : Image d’un objet réel placé avant F par une lentille convergente

On se base sur la figure 12, et on va appliquer les règles de tracés de rayons précédem-
ment énoncées. On a tout d’abord un rayon partant de B parallèle à l’axe optique. Ce
rayon, une fois sorti de la lentille, passera par le foyer image F ′ comme stipulé par la
propriété 3. On a ensuite un rayon partant de B qui passe par le centre optique. Par
propriété 1, il ne sera pas dévié. Enfin, le rayon partant de B et passant par le foyer
objet F ressortira de la lentille en étant parallèle à l’axe optique, comme l’indique la
propriété 2. L’image B′ de B par la lentille se trouve à l’intersection de ces trois rayons,
qui doivent se croiser car on a supposé le système stigmatique. On peut alors retrouver
l’image A′ de A par la lentille grâce à la propriété d’aplanétisme ; comme l’objet A → B
est perpendiculaire à l’axe optique, A′ → B′ doit également l’être, et on sait de plus par
propriété 1 que A′ est nécessairement sur l’axe optique. On peut alors tracer l’image
A′ → B′ obtenue.
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Figure 12 – Construction de l’image d’un objet AB par une lentille convergente : cas où l’objet
est placé avant le foyer objet F .

Figure 13 – Construction de l’image d’un objet AB par une lentille convergente : cas où l’objet
est placé après le foyer objet F . Les tracés en pointillés correspondent aux prolongements de
rayons lumineux

Exemple 5 : Image d’un objet réel placé après F par une lentille convergente

On se base sur la figure 13. On peut commencer à tracer les trois mêmes rayons que
dans le cas précédent mais, problème : ils ne peuvent pas se croiser à droite de la
lentille... qu’à cela ne tienne, il suffit de les prolonger à gauche pour trouver leur point
de croisement, qui sera l’image B′ de B par la lentille. Les rayons issus de B semblent
donc provenir de B′ lorsqu’on observe à l’œil ou avec une caméra à droite de la lentille.
Toutefois, il n’est pas possible de faire converger les rayons lumineux issus de B sur un
écran, contrairement au cas précédent.

On remarque qu’il y a quand même une certaine différence entre ces deux exemples ; sur la
figure 12, l’image est du côté droit de la lentille, les rayons partant de chaque point de l’objet
sont focalisés sur un point de l’image par la lentille, ce qui permet par exemple d’afficher
l’image sur un écran. À l’inverse, sur la figure 13, l’image est du côté gauche de la lentille, on a
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dû procéder à un prolongement fictif (et pas forcément intuitif la première fois qu’on le voit !)
des rayons lumineux pour l’obtenir, et il est impossible de l’afficher sur un écran puisque les
rayons divergent à l’infini du côté droit de la lentille, autrement dit du côté de l’observateur.
La seule manière de voir cette image est d’utiliser un dispositif optique pouvant recueillir les
rayons émergents de la lentille, comme un œil ou un appareil photo. On dit que l’image de la
figure 12 est réelle tandis que l’image de la figure 13 est virtuelle.

Plus formellement,

Définition 8 : Image réelle, image virtuelle

Une image A′ est dite réelle si les rayons émergents du système optique passent
effectivement par A′. À l’inverse, une image est dite virtuelle si seuls les prolongements a

des rayons lumineux passent par A′.

a. On parle aussi parfois de supports des rayons lumineux

Maintenant que nous sommes échauffé·es, passons au cas d’une lentille divergente !

3.1.2 Cas d’une lentille divergente

On a vu que la lentille divergente est définie comme un copié-collé presque parfait de
la lentille convergente, sauf que les foyers objet et image sont inversés. On va voir l’impact
résultant sur la propagation des rayons lumineux.

Méthode 2 : Construire l’image d’un objet par une lentille divergente

Les rayons passant par une lentille divergente obéissent à cinq propriétés, qui permettent
de construire l’image d’un objet par la lentille :

1. Les rayons passant par le centre optique O ne sont pas déviés ;

2. Les rayons dont le prolongement à droite (= prolongement du rayon si la lentille
n’existait pas) passe par le foyer objet F ressortent parallèles à l’axe optique ;

3. Les rayons arrivant parallèles à l’axe optique ressortent en semblant venir du foyer
image F ′, ou autrement dit, leur prolongement à gauche, sans tenir compte de la
présence de la lentille, passe par F ′ ;

4. Des rayons dont les prolongements se coupent dans le plan focal objet ressortent
parallèles ;

5. Des rayons arrivant parallèles sur la lentille ressortent avec des prolongements se
coupant dans le plan focal image.

On comprend mieux le qualificatif de "divergente" associée à une telle lentille ; une source
de rayons parallèles arrivant sur la lentille ressortira en semblant venir du foyer image F ′, et
donc en semblant diverger depuis ce point.

Voyons sur quelques exemples ce que cela donne !
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Exemple 6 : Image d’un objet réel placé avant F ′ par une lentille divergente

On se base sur la figure 14. On trace les trois rayons correspondant aux propriétés 1, 2, 3
énoncées dans le cas d’une lentille divergente. Comme ils ne se coupent pas à droite
de la lentille, on les prolonge à gauche comme dans le cas de l’image virtuelle obtenue
précédemment par une lentille convergente, et on obtient ainsi la position de B′ au point
d’intersection. L’image obtenue est virtuelle car ce sont les prolongements des rayons
issus de B qui passent par B′, et non les rayons en tant que tels.

Figure 14 – Construction de l’image d’un objet AB par une lentille divergente : cas où l’objet
est placé avant le foyer objet F .

On peut constater 9 qu’on obtient à nouveau une image virtuelle si l’on place l’objet A → B
entre F ′ et O. Mais alors, est-ce impossible de former une image réelle à partir d’une lentille
divergente ? Ce serait tout de même bien triste, surtout au vu des similitudes entre lentilles
convergentes et divergentes. Considérons la figure 15.

Vous avez peut-être envie, en voyant cette figure, de hurler très fort que cela n’a aucun
sens physique, étant donné la propagation de la lumière de gauche à droite, de placer un objet
après la lentille divergente. En effet, jusqu’à maintenant, on a considéré des objets placés à
gauche des lentilles, qui sont des objets réels. Ici, ce n’est plus le cas, et on arrive alors au
concept d’objet virtuel. Mais comment aurait-t-on l’image de l’objet par le système? Pour
mieux comprendre, regardons la situation illustrée sur la figure 16.

Sur cette figure, on voit des rayons parallèles à l’axe optique provenant d’une source à
l’infini arrivant sur une lentille convergente. Celle-ci les fait focaliser vers le foyer image F ′,
mais la présence du miroir déplace la formation de l’image du point F ′ au point +. L’image
obtenue est réelle ; on peut l’afficher sur un écran. En revanche, cette image est celle d’un
objet virtuel, situé au point F ′, derrière le miroir. Le qualificatif "virtuel" de l’objet traduit le
fait qu’il n’existe pas physiquement.

Définition 9 : Objet réel, objet virtuel

Un objet est dit réel s’il est placé en amont du système optique. Il est dit virtuel lorsqu’à
l’inverse, il est formé de rayons qui convergent dans le système optique [3].

9. C’est un bon exercice de tracé de rayons, la manière de procéder est identique aux cas précédents.
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Figure 15 – Construction de l’image réelle d’un objet par une lentille divergente. L’objet A → B
est placé après O. Une fois n’est pas coutume, on a coloré les rayons et leurs supports afin de
faciliter la lecture.

C’est exactement ce qu’il se passe dans la figure 16 : l’objet est formé de rayons qui
convergent dans le système optique, d’où son caractère virtuel.

Revenons au cas de la figure 15. Supposons qu’on ait formation d’un objet virtuel derrière la
lentille. Cet objet est donc formé de rayons arrivant par la gauche de la lentille. Les règles de
construction de rayons pour les lentilles divergentes contraignent alors les rayons bleu, orange
et vert à suivre les trajectoires indiquées. Les prolongements de ces rayons se coupent bien
au niveau de l’objet A → B, mais ces rayons sont déviés par la lentille, et forment finalement
l’image réelle A′ → B′.

Pour résumer autrement la distinction entre objets et images réels et virtuels, on peut
utiliser le concept d’espace objet et d’espace image :

— L’espace objet réel est la zone de l’espace placée à gauche du système optique (qui peut
être une lentille simple ou bien une combinaison de lentilles et/ou de miroirs), dans ce
cas, on peut en effet placer une source lumineuse sur l’objet et observer la propagation
des rayons. L’espace objet virtuel est constitué du reste de l’espace, incluant notamment
l’intérieur du système optique 10 ;

— L’espace image réel est la zone de l’espace placée après le système optique, dans ce cas,
on peut former l’image d’un objet sur un écran. L’espace image virtuel est constitué du
reste de l’espace, incluant notamment l’intérieur du système optique.

On peut alors définir de façon plus visuelle les concepts d’objet et d’image réels ou virtuels :

— Un objet est réel lorsqu’il est placé dans l’espace objet réel, et virtuel sinon ;

— Une image est réelle lorsqu’elle est placée dans l’espace image réel, et virtuelle sinon.

3.2 Relation de conjugaison des lentilles minces

On peut avoir envie d’estimer la position de l’image d’un objet autrement qu’en faisant des
tracés à l’aide d’une règle et d’un crayon. La relation de conjugaison des lentilles minces est

10. Cela n’a pas d’importance lorsqu’on considère une lentille mince, mais est bon à savoir lorsque le système
optique considéré est composé de plusieurs lentilles, éventuellement avec des miroirs, ou de lentilles non minces,
par exemple.
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Figure 16 – Exemple d’objet virtuel : une source à l’infini envoie un faisceau de rayons parallèles
en entrée d’une lentille convergente. Ceux-ci sont focalisés comme s’ils allaient passer par le
foyer image F ′ de la lentille, sauf qu’un miroir (indiqué par le plan avec hachures) les dévie
avant d’arriver à F ′ : les rayons convergent et forment une image réelle au niveau du + rouge.
L’image correspond à l’objet virtuel placé en F ′, derrière le miroir. Il s’agit d’un objet virtuel au
sens où il n’existe pas physiquement.

ainsi un outil très utile pour pouvoir calculer la position d’un point particulier dans le système
optique.

Propriété 5 : Relation de conjugaison

Soient une lentille mince de distance focale f ′, A la position d’un objet sur l’axe optique
et A′ la position de son image par la lentille sur l’axe optique. La lentille mince vérifie la
relation :

1

OA′ −
1

OA
=

1

f ′ (4)

On peut également écrire cette relation

1

OA′ −
1

OA
= V (5)

Où V est la vergence de la lentille, exprimée en m−1 ou en dioptries 11 δ.
Le concept de vergence est utile lorsqu’on a plusieurs lentilles accolées. Considérons deux

lentilles minces (L1) et (L2) de distances focales f ′
1 et f ′

2, accolées de telle sorte qu’on puisse
confondre en un point O leurs centres optiques O1 et O2 respectifs. La lentille (L1) fait du
point A une image A1, qui va être utilisée comme objet en entrée de (L2), qui en fera une

image A2. La relation de conjugaison (4) donne alors
1

OA1

− 1

OA
=

1

f ′
1

pour la lentille (L1) et

11. La dioptrie, notée δ, est une unité définie telle que 1δ = 1m−1
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1

OA2

− 1

OA1

=
1

f ′
2

pour la lentille (L2). En sommant ces deux équations, les termes en
1

OA1

se

simplifient, et on trouve
1

OA2

− 1

OA
=

1

f ′
1

+
1

f ′
2

= V1 + V2 en notant Vi la vergence de (Li).

L’accolement de deux lentilles minces est donc une lentille mince de vergence égale à la
somme des vergences de ses composantes.

3.3 Qualifier une image

Dans cette partie, quelques rappels de lycée sur le vocabulaire à connaître pour décrire
une image, en plus de ce qui a déjà été énoncé sur les images réelles et virtuelles.

On commence par définir une grandeur qui sera utile dans la suite, le grandissement γ d’un
objet A → B par une lentille :

γ =
A′B′

AB
(6)

Définition 10 : Image droite, image inversée

On dit qu’une image est droite lorsque γ > 0, ou autrement dit, lorsque A → B et A′ → B′

pointent dans le même sens. Dans le cas contraire, on dit que l’image est inversée.

Définition 11 : Image agrandie, image réduite

On dit qu’une image est agrandie lorsque |γ| > 1, et réduite lorsque |γ| < 1.

Pour donner un exemple, sur la figure 13, l’image est virtuelle, droite et agrandie.
Attention à ne pas confondre le grandissement d’un objet avec le grossissement, qu’on va

voir dans peu de temps avec l’exemple de la lunette astronomique.

4 Applications : appareils optiques

4.1 Une lentille convergente : loupe

Une application immédiate des concepts vus dans la partie d’avant est la loupe : simple
lentille convergente, comme représenté en figure 9, la loupe permet d’agrandir les objets
placés suffisamment proches de son centre, plus précisément, lorsque les objets sont placés
entre F et O. L’image obtenue est alors virtuelle, comme montré en figure 13 ; elle requiert
un œil humain (ou autre dispositif d’imagerie) pour pouvoir être visualisée. La loupe est un
dispositif intéressant car elle permet de mettre des images à l’infini lorsque les objets associés
sont placés dans le plan focal objet, ce qui évite à l’œil de devoir accommoder pour les voir
nettes. Cela est illustré sur la figure 17.

4.2 Deux lentilles convergentes : lunette astronomique

Cette partie correspond au programme de terminale spécialité physique-chimie (programme
2019).

La lunette astronomique est un système optique formé de deux lentilles convergentes (L1)
et (L2), placées de telle façon que le foyer image F ′

1 de (L1) est confondu avec le foyer objet
F ′
2 de (L2), comme on le voit en figure 18.
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Figure 17 – Image à l’infini obtenue à l’aide d’un objet placé dans le plan focal objet d’une
loupe.

Figure 18 – Schéma d’une lunette astronomique, formée de deux lentilles convergentes (L1) et
(L2).

La lentille (L1) est appelée objectif et la lentille (L2) oculaire, et leurs distances focales
vérifient f ′

1 > f ′
2 afin d’avoir un grossissement des objets observés, comme on va le voir plus

loin.
Les lunettes astronomiques sont conçues pour observer des objets placés très loin de

l’observateur·ice, qui peuvent être considérés comme étant à l’infini dans le cadre de l’optique
géométrique. Essayons de faire l’image d’un objet situé à l’infini par la lunette. On considère
un objet vu sous un angle α par rapport à l’axe optique. La figure 19 montre les tracés de
rayons lumineux. Comme les rayons incidents sur (L1) sont parallèles, par les propriétés
précédemment vues, ils se coupent dans le plan focal image de (L1), où se forme ainsi l’image
de l’objet observé. Or, le plan focal image de (L1) est également le plan focal objet de (L2), ce
qui envoie l’image de la flèche rouge à l’infini après passage par (L2).

On dit que la lunette astronomique est un système afocal, car elle envoie à l’infini l’image
d’un objet situé à l’infini. Autrement dit, il n’y a pas de point de focalisation des rayons à
l’issue du système optique.

Par opposition aux systèmes afocaux, les systèmes focaux sont ceux pour lesquels un objet
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Figure 19 – Trajet des rayons lumineux provenant d’un objet vu sous un un angle α par rapport
à l’axe optique. On a représenté en gris les rayons servant à former l’image intermédiaire
de l’objet, qui est symbolisé par une flèche rouge, et en bleu les rayons issus de l’image
intermédiaire, qui sortent de la lunette.

situé à l’infini possède une image à distance finie du système, par exemple les lentilles, et
l’on peut alors définir les foyers objet et image d’une lentille comme les conjugués des points
situés à l’infini.

L’intérêt d’une lunette astronomique est qu’elle permet de voir un objet sous un angle
apparent α′ plus grand qu’à l’œil nu, où celui-ci vaudrait α. On définit alors le grossissement
G d’une lunette astronomique tel que :

G =
α′

α
(7)

Il n’est toutefois pas très pratique de mesurer des angles apparents pour déterminer le
grossissement d’une lunette. On va l’exprimer en fonction des distances focales, en utilisant
l’approximation des petits angles tan(x) ≃ x pour x ≪ 1, et en notant AB la taille de l’image
intermédiaire en F ′

1 :
Pour α :

α ≃ tan(α) =
AB

F ′
1O1

=
AB

f ′
1

Pour α′ :

α′ ≃ tan
(
α′) = AB

F2O2
=

AB

f ′
2

D’où

G =
α′

α
=

f ′
1

f ′
2

> 1 (8)

G > 1 pour f ′
2 < f ′

1, comme dit précédemment et représenté sur le schéma, ce qui permet de
grossir les objets.

Le grossissement permet ainsi de comparer les lunettes astronomiques. À noter que comme
les objets sont à l’infini, on ne peut pas calculer le grandissement d’un objet par la lunette.
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